FastGradientProjection
Documentation for FastGradientProjection.
FastGradientProjection.FGP
FastGradientProjection.FGP!
FastGradientProjection.GP
FastGradientProjection.GP!
FastGradientProjection.FGP!
— MethodFGP!(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")
Same as FGP
, but operates in-place on b
.
FastGradientProjection.FGP
— MethodFGP(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")
return denoised (volume) image b
based on the minimization problem $\min_{\mathbf{x}\in{C}}\|\mathbf{x} - \mathbf{b}\|^{2}_{F} + 2\lambda\mathrm{TV}(\mathbf{x}).$
Arguments
b
: input (volume) image.λ
: regularization parameter.N
: number of iterations.lower_bound=-Inf
: upper bound of the convex closed set $C$. Ifb
is a complex array, projection to $C$ is not performed.upper_bound=Inf
: lower bound of the convex closed set $C$.TV="iso"
: ifTV="iso"
(default), denoising is based on isotropic TV. To specify anisotropic TV, setTV="aniso"
.
FastGradientProjection.GP!
— MethodGP!(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")
Same as GP
, but operates in-place on b
.
FastGradientProjection.GP
— MethodGP(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")
return denoised (volume) image b
. Compared to FGP
, convergence is slower, but memory usage is lower.