FastGradientProjection
Documentation for FastGradientProjection.
FastGradientProjection.FGPFastGradientProjection.FGP!FastGradientProjection.GPFastGradientProjection.GP!
FastGradientProjection.FGP! — MethodFGP!(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")Same as FGP, but operates in-place on b.
FastGradientProjection.FGP — MethodFGP(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")return denoised (volume) image b based on the minimization problem $\min_{\mathbf{x}\in{C}}\|\mathbf{x} - \mathbf{b}\|^{2}_{F} + 2\lambda\mathrm{TV}(\mathbf{x}).$
Arguments
b: input (volume) image.λ: regularization parameter.N: number of iterations.lower_bound=-Inf: upper bound of the convex closed set $C$. Ifbis a complex array, projection to $C$ is not performed.upper_bound=Inf: lower bound of the convex closed set $C$.TV="iso": ifTV="iso"(default), denoising is based on isotropic TV. To specify anisotropic TV, setTV="aniso".
FastGradientProjection.GP! — MethodGP!(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")Same as GP, but operates in-place on b.
FastGradientProjection.GP — MethodGP(b, λ, N; lower_bound=-Inf, upper_bound=Inf, TV="iso")return denoised (volume) image b. Compared to FGP, convergence is slower, but memory usage is lower.